_
-
Ω
-7
α
Ν
0
Ω
7
+
J
α
-
≥
`
3
>
_>
2
0
Ŧ
+
7

STUDY MODULE DESCRIPTION FORM					
,		Code 1010325341010326095			
Field of study	Profile of study (general academic, practical)	Year /Semester			
Electrical Engineering (brak)		2/4			
Elective path/specialty	Subject offered in:	Course (compulsory, elective)			
Measurement Systems in Industry and	Polish	obligatory			
Cycle of study:	Form of study (full-time,part-time)				
Second-cycle studies	part-	part-time			
No. of hours		No. of credits			
Lecture: - Classes: - Laboratory: -	Project/seminars:	18 2			
Status of the course in the study program (Basic, major, other)	eld)				
(brak)	(brak)				
Education areas and fields of science and art	ECTS distribution (number and %)				
technical sciences	2 100%				
Technical sciences	2 100%				
		l .			

Responsible for subject / lecturer:

dr hab. inż. Andrzej Odon email: andrzej.odon@put.poznan.pl tel. 616652599 Wydział Elektryczny ul. Piotrowo 3A 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge ine the scope of electrotechnics and metrology. Basic knowledge in the scope of electronics, including analog and digital electronic circuits.			
2	Skills	Ability of the efficient self-education in the area concerned with the module			
3	Social competencies	Awareness of the necessity of competence broadening and ability to show readiness to work as a team			

Assumptions and objectives of the course:

- Sills in the scope of design and analysis of the electronic analog and digital circuits with application of computer assistance to simulate these circuits.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Ability to explain the principles and techniques of measurement signals acquisition and processing for the modern applications in industry and biomedical engineering [K_W12 +++]
- 2. Ability to describe the application areas and potential of the modern measurement systems [K_W18 +]

Skills:

1. Ability to design creatively the modern measurement systems, using the possibilities offered by presenty available technologies, taking into account the limitattions of the knowledge and technique status - [K_U01 +, K_U09 +++, K_U15 +]

Social competencies:

- 1. Ability to think and act enterprisingly in the area of the moderne measurement systems [K_K01 +]
- 2. Understanding a need of the broad populatrization of the knowledge in the area of simple and complex measurement systems used in industry and biomedical engineering [K_K02 +]

Assessment methods of study outcomes

Projects:

- continuous evaluation, at all classes, and awarding the skill increase in the use of the known principles and methods,
- evaluation of the knowledge and skills related to a given group or independent project and evaluation of the prepared reports.

Faculty of Electrical Engineering

Course description

- Design and analysis of properties of the selected electronic systems and carrying out the simulation studies using specialized programming environments.
- Making the circuit diagrams by the use of MultiSIM environment.
- Application of the MultiSIM environment for the DC, AC, frequency and time analysis of electronic circuits.

Basic bibliography:

- 1. T. Bogart, J. Beasley, G. Rico, Electronic Devices and Circuits, Prentice-Hall, Inc., New Jersey 2001.
- 2. U. Tietze, Ch. Schenk, Układy półprzewodnikowe, WNT, Warszawa 2001.
- 3. K. Baranowski, A. Welo, Symulacja układów elektronicznych, Wydawnictwo MIKOM, Warszawa 1996.

Additional bibliography:

- 1. A. Król, J. Moczko, PSPICE? Symulacja i optymalizacja układów elektronicznych, Wydawnictwo Nakom, Poznań 1999.
- 2. J. Porębski, P. Korohoda, PSPICE ? program analizy nieliniowej układów elektronicznych, WNT, Warszawa 1994.

Result of average student's workload

Activity	Time (working hours)
1. Participation in projects classes	18
2. Participation in consulting with lecturers	5
3. Realization of projects	25

Student's workload

Source of workload	hours	ECTS		
Total workload	48	2		
Contact hours	23	1		
Practical activities	43	2		